The severe acute respiratory syndrome coronavirus Nsp15 protein is an endoribonuclease that prefers manganese as a cofactor.

نویسندگان

  • Kanchan Bhardwaj
  • Linda Guarino
  • C Cheng Kao
چکیده

Nonstructural protein 15 (Nsp15) of the severe acute respiratory syndrome coronavirus (SARS-CoV) produced in Escherichia coli has endoribonuclease activity that preferentially cleaved 5' of uridylates of RNAs. Blocking either the 5' or 3' terminus did not affect cleavage. Double- and single-stranded RNAs were both substrates for Nsp15 but with different kinetics for cleavage. Mn(2+) at 2 to 10 mM was needed for optimal endoribonuclease activity, but Mg(2+) and several other divalent metals were capable of supporting only a low level of activity. Concentrations of Mn(2+) needed for endoribonuclease activity induced significant conformation change(s) in the protein, as measured by changes in tryptophan fluorescence. A similar endoribonucleolytic activity was detected for the orthologous protein from another coronavirus, demonstrating that the endoribonuclease activity of Nsp15 may be common to coronaviruses. This work presents an initial biochemical characterization of a novel coronavirus endoribonuclease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mutational analysis of the SARS virus Nsp15 endoribonuclease: identification of residues affecting hexamer formation.

The severe acute respiratory syndrome (SARS) coronavirus virus non-structural protein 15 is a Mn2+-dependent endoribonuclease with specificity for cleavage at uridylate residues. To better understand structural and functional characteristics of Nsp15, 22 mutant versions of Nsp15 were produced in Escherichia coli as His-tagged proteins and purified by metal-affinity and ion-exchange chromatograp...

متن کامل

The coronavirus endoribonuclease Nsp15 interacts with retinoblastoma tumor suppressor protein.

Coronaviruses encode an endoribonuclease, Nsp15, which has a poorly defined role in infection. Sequence analysis revealed a retinoblastoma protein-binding motif (LXCXE/D) in the majority of the Nsp15 of the severe acute respiratory syndrome coronavirus (SARS-CoV) and its orthologs in the alpha and beta coronaviruses. The endoribonuclease activity of the SARS-CoV Nsp15 (sNsp15) was stimulated by...

متن کامل

Crystal structure of a monomeric form of severe acute respiratory syndrome coronavirus endonuclease nsp15 suggests a role for hexamerization as an allosteric switch.

Mature nonstructural protein-15 (nsp15) from the severe acute respiratory syndrome coronavirus (SARS-CoV) contains a novel uridylate-specific Mn2+-dependent endoribonuclease (NendoU). Structure studies of the full-length form of the obligate hexameric enzyme from two CoVs, SARS-CoV and murine hepatitis virus, and its monomeric homologue, XendoU from Xenopus laevis, combined with mutagenesis stu...

متن کامل

New antiviral target revealed by the hexameric structure of mouse hepatitis virus nonstructural protein nsp15.

The unique coronavirus transcription/replication machinery comprised of multiple virus-encoded nonstructural proteins (nsp) plays a vital role during initial and intermediate phases of the viral life cycle. The crystal structure of mouse hepatitis virus strain A59 (MHV-A59) nsp15 is reported at 2.15-A resolution. nsp15 is an XendoU endoribonuclease and is the first one from this family to have ...

متن کامل

Biochemical and genetic analyses of murine hepatitis virus Nsp15 endoribonuclease.

The goal of this project was to better define the relationship between the endoribonuclease activity of murine hepatitis virus (MHV) Nsp15 (mNsp15) and its role in virus infection. Molecular modeling demonstrated that the catalytic residues of mNsp15 are superimposable with its severe acute respiratory syndrome coronavirus ortholog. Alanine substitutions at three key residues in the mNsp15 cata...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 78 22  شماره 

صفحات  -

تاریخ انتشار 2004